
Modeling of Ethernet AVB Networks for
Worst-Case Timing Analysis

Jonas Diemer ∗ Jonas Rox ∗ Rolf Ernst ∗

∗ Institute of Computer and Network Engineering,
Technische Universität Braunschweig, Germany
(e-mail: {diemer|rox|ernst}@ida.ing.tu-bs.de).

Abstract: Ethernet is currently explored as the upcoming network standard for distributed control
applications in many different industries such as automotive, avionics and industrial automation. It offers
higher performance and flexibility over traditional control bus systems such as CAN and ProfiBus. For
distributed control applications, predictable communication timing is highly important which can be
problematic using standard Ethernet. The new Ethernet AVB standard aims to improve this by a new
scheduling algorithm based on traffic shaping. However, the current AVB standard lacks a formal timing
guarantee which is important for safety-critical control applications. As a solution to this, we present a
model for Ethernet AVB networks and a transformation into a timing analysis model. Based on the timing
model, we apply a compositional performance analysis approach known from the analysis of distributed
real-time systems to derive worst-case timing properties and hence timing guarantees of the original
Ethernet AVB network. For this, we provide the required formalism for the analysis of the scheduling of
Ethernet AVB.

Keywords: Communication Networks, Ethernet, Performance analysis, Timing analysis, Formal
verification, System models, Mathematical models, Industry automation, Automotive control

1. INTRODUCTION

The use of Ethernet for distributed control applications is cur-
rently investigated in many industries, such as automotive,
avionics and industrial automation. A major expected benefit
is the flexibility of Ethernet as an open standard with no tight
bounds to a specific supplier. Having the same network in-
frastructure in automation and offices, Ethernet also simplifies
installation and maintenance and integration into corporate IT
infrastructures. At the same time, Ethernet offers high data rates
at an extremely low price point compared to domain-specific
protocols like CAN, FlexRay etc.

Switch 1

Controller+
Terminal

I/O 1

Switch 2

Switch 3

I/O 2

I/O 4

I/O 3

Camera

Fig. 1. Example for a small Ethernet Network in Industrial
Automation

Figure 1 shows an example of a simple industrial automa-
tion network. Multiple nodes with sensors (e.g. light barrier,
pressure, temperature) and actuators (e.g. conveyor belt mo-
tors, soldering robots) are connected via Ethernet switches to

a central controller. The sensors periodically send their mea-
surement data to the controller which processes the data and
then sends control messages to the actuators. The controller also
implements a terminal station for the human-machine-interface,
which includes observation data received from a camera con-
nected via Ethernet.

A major challenge when using Ethernet in the industrial do-
mains is the predictable timing of data transfers. Many control
applications in the automation industry require periodic trans-
feral of sensor and control messages with low latency and jitter
in order to guarantee correct functionality of the control loop.
Different solutions exist that tackle this problem on the network
protocol layer such as PROFINET (http://www.profinet.com/),
EtherCAT (http://www.ethercat.org), TT-Ethernet (SAE (2011)),
or AFDX (ARINC (2009)). However, these solutions require
either special hardware media access controllers (MACs) in
the nodes, special switches or both, which is problematic in
terms of cost and availability. Here, the use of the Ethernet
IEEE 802.1 (2011) standard for audio-video bridging (AVB)
is a promising alternative which was originally conceived to
facilitate transfer of real-time audio and video streams for
studio applications. Being an official Ethernet standard, it is
likely that AVB-capable switch integrated circuits (ICs) will
be available at very high quantities and hence very low price
compared to the industry-specific solutions mentioned above.
This motivates the evaluation of the usability of Ethernet AVB
for other domains such as industrial automation.

Ethernet AVB augments classical Ethernet with capabilities
of reserving bandwidth to streams of certain classes. These
are enforced using a credit-based shaping algorithm (CBSA),
which is based on priorities and adds a traffic shaper to every
output port for the corresponding classes. With this, higher

priorities can no longer starve lower priorities and the allocated
bandwidth can be guaranteed (per class). However, the current
Ethernet AVB standard does not provide formulas for worst-
case latencies that cover all corner cases. To provide accurate
upper bounds on latency and hence formal guarantees, a formal
compositional performance analysis (CPA) approach can be
used which is based on the schedulability and timing analysis of
distributed computing systems as described in e.g. Henia et al.
(2005). To this end, this paper presents a model transformation
to transform an Ethernet AVB model into a timing analysis
model. For this model, we provide a formal timing analysis
approach to obtain timing guarantees for Ethernet transfers.

The remainder of the paper is organized as follows: Section 2
provides some background and related work about Ethernet
AVB and formal timing analysis. In Section 3, we will describe
the modeling of Ethernet AVB systems and how such models
can be translated into timing analysis models. Section 4 will
present the analysis of worst-case timing properties of the
obtained analysis model in theory, whereas Section 5 evaluates
this analysis approach for an example network.

2. BACKGROUND AND RELATED WORK

In this paper, we present a worst-case analysis of Ethernet
AVB networks based on a model transformation into a timing-
analysis model. A similar approach has been shown for regular
Ethernet in Rox and Ernst (2010) and for networks-on-chip in
e.g. Shi and Burns (2008) and Diemer et al. (2011). A study of
the timing properties of Ethernet AVB has been presented by
Imtiaz et al. (2009). In this study, however, only per-class tim-
ings were obtained instead of those for individual streams. In
the following subsections, we will provide further background
on Ethernet AVB and formal timing analysis.

2.1 Ethernet AVB

Ethernet AVB is described in several standards of IEEE 802.1.
Among other things, the standard defines a new scheduling
mechanism for output port arbitration which is based on priori-
tized traffic classes (like regular Ethernet QoS) but adds traffic
shaping to certain traffic classes as shown in Figure 2(a). As
with classical Ethernet, each traffic class uses dedicated queues
so scheduling within a class follows a FIFO order. The traffic
shapers limit the number of frames which are transferred per
time on a specific traffic class in order to leave enough room
for low-priority traffic. According to the 802.1Qav standard,
there are at least (and usually only) two classes to which traffic
shaping is applied, called stream reservation (SR) classes A
and B. The traffic shaping is implemented using credits which
are replenished at a constant rate (the so-called idleSlope) and
consumed at the rate allowed by the port transmission rate (the
sendSlope) when data is transferred.

The right side of Figure 2(b) shows an example of the transfer
of two frames (’1’ and ’2’) on class A with an interfering non-
real-time frame. The graphs show (in descending order) the
credit level and the queue occupancy of class A and the data
transmission on the output port. Frames on an SR class are
only sent if the corresponding credit level is zero or higher and
the credit level is reset to zero as soon as there are no frames
waiting on the corresponding queue. Hence, the traffic shaper
enforces an idle time between consecutive frames in each class
as shown in Figure 2(b) (between frames 2 and 3). When the

corresponding traffic class is blocked due to a non-preemptive
transfer that started earlier, credit can accumulate, resulting in
a burst of frames once the output is free again as shown for
frames 1 and 2 in Figure 2(b).

Class A

Class B

Non-
Real-
Time

1
2

1

2
3

3

3

Credit A

Queue A

TX Data

(a) (b)

Non-RT Frame 2

sendSlope

Credit A

idleSlope

Fig. 2. Architecture (a) and operational example (b) of the
Credit-Based Shaping Algorithm (CBSA).

2.2 Formal Timing Analysis

To analyze the worst-case timing behavior of Ethernet AVB, we
use the Compositional Performance Analysis (CPA) approach
as implemented by the tool SymTA/S (see Richter et al. (2003);
Henia et al. (2005); Schliecker et al. (2009)), which is simi-
lar to Real-Time Calculus (Thiele et al. (2000)). This formal
analysis assumes a set of tasks processed by communication
or processing resources. For the tasks, formal and conservative
characteristics are assumed, such as the lower and upper bounds
on the task execution time (C− and C+). Tasks are activated
by events which can originate from an external source, such
as a timer interrupt, from other tasks via inter-task communi-
cation corresponding to their activation dependencies. Events
are modeled using minimum and maximum distance functions
δ−(n) and δ+(n), which are an lower/upper bound on the size
of a time window containing n event arrivals. These functions
have pseudo-inverse counterparts η+(∆t) and η−(∆t), which
are called maximum and minimum arrival curves and return
the maximum and minimum number of events that can arrive
within any time window of size ∆t. Such an event model covers
all possible event arrivals of a specific event source and is not
just a specific trace of events.

From these task properties and knowledge about the scheduling
mechanism, one can derive upper bounds on the timing proper-
ties using a busy-window-based approach based on Lehoczky
(1990); Tindell et al. (1994). It works by constructing a critical
instant scenario for each task on each resource by assuming the
worst-case arrival of all interfering tasks to maximally delay the
processing of the task under consideration. For such a scenario,
the n-event busy window (or busy period) is computed for each
task, i.e. an upper bound on time required to process n activa-
tions of the task. This allows the computation of an output event
model describing the minimum and maximum numbers of tasks
completion in a specific interval as described in Henia et al.
(2005) and Schliecker et al. (2008). The output event models
are then forwarded as input event models of the dependent
tasks, which are then analyzed again using the updated event
models. This procedure is iterated until a fixed point (stable
event models) is reached or a timing constraint (e.g. maximum
path latency) is violated (see Henia et al. (2005)). To break
cyclic analysis dependencies, initial event models for all tasks
are derived from the external input event model of each task
chain. In addition to the validation of the schedulability (all
deadlines met) the analysis also yields upper bounds on the

worst-case response time (WCRT) of tasks and other timing
properties such as the end-to-end latency of a chain of tasks.

3. MODELING OF ETHERNET AVB FOR TIMING

In this section, we will first describe the domain-specific model
for Ethernet networks and the system model used by the compo-
sitional performance analysis before we discuss how the former
is transformed into the latter.

3.1 Ethernet AVB Model

Switch

Port

name : String

pTxRate : Integer

idleSlope[8] : Integer

sendSlope() : Integer

1

1..*port

Node

Target

name : String

priority : Integer

dataLength : Integer

1

1..*

sendList

CyclicTarget

period : Integer

jitter : Integer

minDist : Integer

Network

name : String

generateSystemModel()

11..*

switches

1 1..*

nodes

NetworkEntity

name : String

connect(peer : NetworkEntity)

route(destination : NetworkEntity) : list<Port>

1

1 peerSwitch

1

peerPort

1

Fig. 3. Domain-specific model for Ethernet AVB

Figure 3 shows our domain-specific model in which Ethernet
AVB networks can be expressed. The main components are
switches and nodes, which are interconnected through ports.
All components are identified by a unique name. For each port,
the physical transmission rate (pT xRate) is specified. Addition-
ally, each port specifies the CBSA idleSlope for each of the 8
priorities. Note that according to the Ethernet AVB standard,
there are normally only two SR classes A and B (corresponding
to priorities 3 and 2) and at most 7 SR classes but the model
offers more flexibility. For convenience, there is also a function
to compute the sendSlope, which is the difference between the
idleSlope and the pT xRate. Targets describe traffic streams by
source and destination nodes. Special derived classes such as
CyclicTarget capture specific frame injection patterns such as
periodic with jitter and a minimum distance (minDist) between
frames. Each Target also specifies its priority and the maximum
packet size (dataLength). In order to compute the route from a
specific source node to a target, the route()-function is used for
a recursive depth-first search.

3.2 CPA System Model

Figure 4 shows the CPA system model as described in Sec-
tion 2.2. For resources, a scheduling policy (e.g. static prior-
ity non-preemptive) is specified. For tasks, the execution time
bounds or best-case and worst-case execution times (WCET
and BCET) as well as a scheduling priority are specified.
Each task has an activating event model containing the δ−(n)

and δ+(n) functions and their pseudo-inverse counterparts
η+(∆t) and η−(∆t) (which are actually derived from δ−(n)
and δ+(n)). Tasks form double-linked lists to model activa-
tion behaviors (task chains) and forward output event models.
Streams can be a subset of such a task chain to define a path
for the computation of an end-to-end latency including static
per-hop and per-stream overheads.

Task

name : String

WCET : Float

BCET : Float

priority : Integer

Resource

name : String

schedulingPolicy : String

newOperation()

1

tasks

1..*

resource

EventModel

delta_min : Function

delta_plus : Function

eta_min() : Float

eta_plus() : Float

0..1

prevTask

0..1

nextTask

1

1inEventModel

SystemModel

Stream

name : String

perHopDelay : Float

perStreamDelay : Float

0..*1..*

tasks

1

1..*

1

1..*

1

1..*

Fig. 4. Compositional Performance Analysis system model

3.3 Model Transformation

In order to apply compositional performance analysis to com-
pute worst-case bounds on network timing, the domain-specific
Ethernet AVB model must be transformed into a CPA system
model. For this, we need a link between the entities in the Eth-
ernet network and the components of the CPA system model.
Since we are interested in the delay of frame transfers, it is
obvious to map these to task executions in the CPA system
model. To maintain compositionality, we divide the transfer of
a frame through the network into a chain of individual link and
switch traversal tasks. Hence the transfer latency of a frame
becomes the end-to-end path latency of the corresponding task
chain.

In order to derive accurate timing bounds from the transformed
model, we must capture the delays encountered by packets in
the network. These delays can be static and dynamic. Static
delays such as wire transmission delays occur independently of
other traffic in the network, while dynamic delays result from
contention in the network which is resolved by arbitration or
scheduling, e.g. at the switch output ports. Static delays can be
trivially captured in the latency computation and are modeled
as per-hop and per-stream overheads in the streams. To capture
dynamic delays we create a scheduling resource for each arbi-
tration point in the network with tasks for each stream passing
through. The worst-case execution time (WCET) of these tasks
is equal to the maximum time it takes for a frame to pass
through the arbitration point without contention. Respecting the
minimum Ethernet frame size, the frame overhead and the inter-
frame gap, the WCET C+

i can be obtained as

C+
i =

(48Byte+max(36Byte,dataLength))
pT xRate

(1)

The only components where significant arbitration delays can
be observed are the switch output ports. Hence, we map each

switch output port in the Ethernet AVB model to a resource.
Nodes and targets (i.e. communication streams) are mapped to
task chains, which are assigned to the corresponding resources
according to the route taken in the Ethernet network. The tar-
gets’ priorities are assigned to the corresponding task priorities.
The event model describing packet injection is derived from
the packet injection pattern of the target, e.g. for a an injection
with period P, jitter J and minimum distance d, we use (see
Schliecker et al. (2008))

δ
−(n) = max{(n−1) ·d,(n−1) ·P− J} (2)

δ
+(n) = (n−1) ·P+ J (3)

The Ethernet AVB model might not include a complete spec-
ification of low-priority legacy traffic as the characteristics of
such best-effort traffic are often not known. In this case, we
add low-priority interferer tasks to all output resources, which
covers the worst-case of all possible low-priority traffic in the
Ethernet network.

Figure 5 shows the transformed CPA system model of the ex-
ample from Figure 1. For clarity, the sensor and control streams
are drawn as two different models. Light boxes represent re-
sources (transformed from switch output ports) which con-
tain circles representing tasks for each stream passing through.
Tasks are interconnected to form streams representing targets
in the Ethernet model. Event models are shown in white boxes.
Dark boxes represent switches and are shown to highlight the
grouping of resources; they are not part of the actual CPA sys-
tem model. Note that tasks/resources representing static wire
delays have been omitted in Figure 5 for compactness.

The model transformation is unidirectional. However, the re-
sults obtained from the analysis of the CPA system model can
be back-annotated into the Ethernet AVB model. The transfor-
mation process described here works for all possible Ethernet
AVB network configurations.

4. WORST-CASE TIMING ANALYSIS OF ETHERNET
AVB

With the model transformation described above, we have ob-
tained an analyzable timing model of an Ethernet AVB network.
Although we can apply the compositional performance analysis
approach to the transformed system model, no existing local
analysis matches the behavior of Ethernet AVB. Hence, we
require formulas to compute the upper bounds on the busy
window, output event model and response time for a resource
under Ethernet AVB scheduling.

In principle, the AVB switch follows a static-priority non-
preemptive schedule (SPNP) for which local analyses exist
(e.g. Davis et al. (2007)). However, the traffic shaping ap-
plied to Class A and B traffic requires an extension of the
standard SPNP analysis. Furthermore, Ethernet allows differ-
ent streams with the same priority being scheduled in FIFO
ordering which requires an extension similar to the analysis of
earliest-deadline-first (EDF) scheduling (see Palencia and Har-
bour (2003)). Hence, we will now derive the required formalism
for the local analysis for AVB, considering a task τi model-
ing the transfer of a frame over a single switch. Under AVB
scheduling, the transfer latency of a single frame of a specific
stream (and hence the execution of the task τi) is impacted by:

• Transfer time ttrans f er: The time to transfer a frame (ex-
ecute the task τi) is determined by the network speed

(and the resulting core execution time), not including any
blocking (no-load transfer time).

• Blocking time by lower-priority frame ILPB: Task τi can be
blocked by lower-priority tasks that commenced transfer
just before the activation of the task.

• Blocking time by same-priority frames ISPB: Task τi can
be blocked by other tasks of the same priority which were
activated before itself.

• Blocking time by higher-priority frames IHPB: All higher-
priority tasks may block task τi, limited by the traffic
shaping applied to the high-priority classes. For the scope
of this paper, we focus only on the analysis of the highest
priority class-A traffic and thus omit the higher-priority
blocking.

• Blocking time by traffic shaping IT SB: Task τi may have
to wait for shaper credits to be replenished before it may
execute.

For the analysis of AVB, we extend the definition of the level-i
busy-period wi(q) (cf. Tindell et al. (1994)) to account for the
traffic shaper:
Definition 1. The maximum (minimum) q-event busy time wi(q)
of a task τi is given by the maximum (minimum) time the
resource is busy processing q events, if all but the first of
the q events arrive within the busy-window of their respective
predecessor. The resource is considered busy if it processes a
task (transmits a frame) or if the traffic shaper of task τi still
has negative credit.

The maximum busy-window wi(q), i.e. the longest time re-
quired to forward q frames of a stream τi, can be bound by
maximizing and adding all of the above delays:

wi(q)≤ttrans f er(q)+ ILPB+

ISPB(wi(q))+ IT SB(wi(q))+ IHPB(wi(q)) (4)

Note that wi(q) appears on both sides of the equation which
results in an integer fixed point problem that can be resolved
iteratively by starting with wi(q) = ttrans f er(q). We will now
discuss the upper bounds of each component of wi(q).

The maximum transfer time for q packets of a stream τi is
given by

ttrans f er(q) = q ·C+
i (5)

The interference from the traffic shaper IT SB is interdependent
with other interference ILPB, ISPB, and IHPB. This is because
positive credit accumulates when a task is blocked which re-
duces traffic shaper blocking later. Hence, in order to maximize
the overall interference, i.e. the sum of the terms, we assume
that the traffic shaper interference occurs as early as possible,
according to the following lemma.
Lemma 1. If a task is blocked by its own traffic shaper within
its busy window, all previous interference by other traffic is
irrelevant.

Proof. To verify this lemma, we assume that a task is blocked
by its traffic shaper at tT S. If it had been blocked by another task
before at tS < tT S, it would have built up positive credit during
this time. This would postpone the time of depletion of the
shaper credits and hence increase tT S by tcredit . tcredit is exactly
identical to the amount of blocking the task received by the
other stream. Hence any blocking before tT S is compensated by

Legend

Switch 1

Switch 2

Switch 3

Switch 1

Switch 2

Switch 3

ηctl

ηcam

ηI/O4

ηI/O2

ηI/O3

ηI/O1

(a) (b)η

Resource

Task

Event stream

Input Event Model

Fig. 5. Transformed analysis models of the example network for the sensor streams (a) and control streams (b)

a reduced blocking by the traffic shaper. From this, the lemma
follows.

A task τi can suffer lower-priority blocking only once by a
non-preemptive lower-priority task that started executing just
before τi was ready. In the worst case, the longest executing
lower-priority task must be assumed to be the blocker:

ILPB = max
j∈l p(i)

{
C+

j

}
(6)

where l p(i) is the set of lower priority tasks mapped to the same
resource as task τi.

The same-priority blocking depends on the arrival time ai(q)
of the q-th event of task τi due to the FIFO scheduling within the
same priority. Hence, the blocking inferred by the same-priority
tasks can be bounded by

ISPB(ai(q))≤ ∑
j∈sp(i)

(
η
+
j (ai(q)) ·C+

j

)
(7)

with sp(i) being the set of same-priority tasks mapped to the
same resource as task τi and η

+
j being the worst-case arrival

function of task j. Thus η
+
j (ai(q)) is the maximum number

of activations of task j before the arrival of the q-th activation
of task τi. For tasks which are activated by preceding tasks,
this bound can be improved by exploiting the traffic shaping
performed on the preceding task’s resource. The maximum load
allowed by the corresponding preceding traffic shaper (derived
from the idleSlope and sendSlope parameters) can be used
as an upper bound for the interference from tasks from that
resource. Although this improvement is implemented in the
analysis, a detailed formulation is out of the scope of this paper.

The traffic shaper blocking depends on the allowed rate
(idleSlope) of the corresponding class. Every task executed
on the class of task τi (i.e. tasks in sp(i) ∪ {τi}) consumes
credits, which may lead to a blocking by the shaper. The
first frame is not blocked by the shaper according to the def-
inition of the busy window (Definition 1). The amount of
credits consumed by a transmission lasting Ctrans time units
is Kconsumed = −sendSlopei ·Ctrans. Considering traffic shaper
blocking observed by task τi, Ctrans can be bounded by the
time required to transmit own and same-priority frames, i.e.
Ctrans ≤ ttrans f er(q)+ ISPB(ai(q)). Hence, to replenish the cred-
its consumed by previous frame transfers, the following time is
required:

IT SB(ai(q)) =
Kconsumed

idleSlopei
=
−sendSlopei

idleSlopei
·Ctrans (8)

≤
[
(q−1) ·C+

i + ISPB(ai(q))
]
· −sendSlopei

idleSlopei
(9)

This formula assumes that the first frame does not observe any
traffic shaper blocking, hence the q−1.

Now that we have derived the q-event busy window for Ethernet
AVB scheduling, we can bound the worst-case response time
Rmax

i of task τi. For this, we must find the maximum distance
between the completion of q activations (wi(q)) and the arrival
of the q-th activation relative to the arrival candidate ai(q):

Rmax
i = max

q=1,2,...

{
max
ai(q)

{
wi(q)−ai(q)−δ

−
i (q)

}}
(10)

The end-to-end latency of a frame can be computed as a
sum of the individual per-hop delays and the additional wire
and (de-)packetization delays. Furthermore, we can derive the
output event model for each task which becomes the input

Cam->Ctl

Ctl->
IO1

Ctl->
IO2

Ctl->
IO3

Ctl->
IO4

IO1->Ctl

IO2->Ctl

IO3->Ctl

IO4->Ctl
0

20

40

60

80

100

120

140

160

180
Stream End-to-End Latencies (µs)

worst-case AVB
worst-case SPNP
best-case

Fig. 6. Analysed worst-case latency bounds for priority- and
AVB-based Ethernet.

event models of dependent tasks as proposed in Schliecker
et al. (2008). To improve the output event model, we can again
exploit the known blocking inferred by the shaper as done in
the computation of the same-priority blocking.

5. EXPERIMENTAL EVALUATION

We have implemented the presented Ethernet and CPA models,
the model transformation and the analysis in Python. For evalu-
ation, we have modeled the simple network from the introduc-
tory example (see Figures 1 and 5). We compare the latency
bounds for the system assuming (a) standard Ethernet (only
priorities) and (b) Ethernet AVB with additional traffic shaping.
The per hop latency for (a) is obtained using Equation 4 with
IT SB = 0.

In this example, all streams between the controller and the
I/O modules are SR class-A real-time streams (priority 3),
while the stream between the camera and the controller is
regular traffic (priority 0). We assume that all streams are
periodically activated. For the streams between the I/O blocks
and the controller the period is 250 µs and 4Bytes are sent
per period (both directions). For the stream from the camera to
the terminal, the period is 195 µs with 1500Bytes sent, which
corresponds to an uncompressed black&white VGA video at
25fps. For the class-A streams, the idleSlopes are configured
to allow twice the requested data rate. This overreservation
reduces the otherwise very high worst-case traffic shaper when
multiple same-priority frames arrive in a burst.

Figure 6 shows the results of the analysis. For streams
Cam→Ctl and Ctl→IO1, priority and AVB Ethernet achieve
nearly identical worst-case latencies. For all other streams,
however, priority-based Ethernet significantly outperforms AVB.
This is due to the fact that the interference caused by the traffic
shaper in CBSA is always negative to class-A streams and is
maximized in the worst-case when a burst of class-A frames
arrives. This is exaggerated due to the compositional approach,
which assumes worst-case traffic shaper blocking on every hop
independently. The only positive effect is on the interference
of lower-priority streams (e.g. stream Cam→Ctl), which is cur-
rently not exploited in the analysis.

6. CONCLUSION

In this paper, we have presented the modeling of Ethernet AVB
and how such models can be transformed into timing analysis
models. We have shown how worst-case timing parameters can
be computed from the transformed models. This way, formal
guarantees on the timing of Ethernet AVB streams on the
system level can be obtained which enables the use of such
networks in real-time critical embedded systems.

REFERENCES

ARINC (2009). ARINC Report 664P7-1 Aircraft Data Net-
work, Part 7, Avionics Full-Duplex Switched Ethernet Net-
work. Technical report, ARINC.

Davis, R., Burns, A., Bril, R., and Lukkien, J. (2007). Con-
troller Area Network (CAN) Schedulability Analysis: Re-
futed, Revisited and Revised. Real-Time Systems, 35(3).

Diemer, J., Rox, J., Negrean, M., Stein, S., and Ernst, R.
(2011). Real-Time Communication Analysis for Networks
with Two-Stage Arbitration. In EMSOFT’11.

Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and
Ernst, R. (2005). System Level Performance Analysis–
the SymTA/S Approach. IEE Proceedings-Computers and
Digital Techniques, 152(2).

IEEE 802.1 (2011). Bridging and management.
http://standards.ieee.org/about/get/802/802.1.html.

Imtiaz, J., Jasperneite, J., and Han, L. (2009). A performance
study of Ethernet Audio Video Bridging (AVB) for Industrial
real-time communication. In Emerging Technologies &
Factory Automation, 2009. ETFA 2009. IEEE Conference on.

Lehoczky, J. (1990). Fixed priority scheduling of periodic task
sets with arbitrary deadlines. In Proceedings of the 11th
Real-Time Systems Symposium.

Palencia, J. and Harbour, M. (2003). Offset-based response
time analysis of distributed systems scheduled under EDF.
In Real-Time Systems, 2003. Proceedings. 15th Euromicro
Conference on.

Richter, K., Jersak, M., and Ernst, R. (2003). A Formal Ap-
proach to MpSoC Performance Verification. IEEE Com-
puter, 36(4).

Rox, J. and Ernst, R. (2010). Formal Timing Analysis of Full
Duplex Switched Based Ethernet Network Architectures. In
SAE World Congress, volume System Level Architecture
Design Tools and Methods (AE318). SAE International.

SAE (2011). SAE International Aerospace Standard SAE-
AS6802, Time-Triggered Ethernet. Technical report, SAE.

Schliecker, S., Rox, J., Ivers, M., and Ernst, R. (2008). Pro-
viding Accurate Event Models for the Analysis of Heteroge-
neous Multiprocessor Systems. In CODES-ISSS.

Schliecker, S., Rox, J., Negrean, M., Richter, K., Jersak, M.,
and Ernst, R. (2009). System Level Performance Analysis
for Real-Time Automotive Multi-Core and Network Archi-
tectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 28(7).

Shi, Z. and Burns, A. (2008). Real-time communication analy-
sis for on-chip networks with wormhole switching. In NOCS.
IEEE Computer Society.

Thiele, L., Chakraborty, S., and Naedele, M. (2000). Real-time
calculus for scheduling hard real-time systems. In ISCAS,
volume 4.

Tindell, K., Burns, A., and Wellings, A. (1994). An extendible
approach for analyzing fixed priority hard real-time tasks.
Real-Time Systems, 6(2).

	0848

